ตอนที่ 2: หัวใจของการคิด: GRC, Algorithm และความถูกต้องของ Data ใน ERP
ในตอนที่ 1 : รากฐานดิจิทัล นั้น เราได้สร้างความเข้าใจร่วมกันว่า ERP คือโครงสร้างร่างกายและระบบประสาทที่เชื่อมโยงทุกส่วนขององค์กรเข้าด้วยกันอย่างแยกไม่ได้ และเป็นผู้สร้าง Data ที่มีคุณภาพ แต่ข้อมูลที่ไหลเวียนในระบบนั้นจะมีความน่าเชื่อถือและนำไปสู่การบริหารความเสี่ยงได้อย่างไร? คำตอบคือ Algorithm (อัลกอริทึม) และ GRC (Governance, Risk, Compliance) บทความตอนนี้จะพาเราเจาะลึกเข้าไปใน ‘สมอง’ ของระบบ ERP เพื่อทำความเข้าใจว่าชุดคำสั่งและตรรกะเหล่านี้กำหนด ความถูกต้อง (Data Integrity) และ ความเกี่ยวพัน (Interconnectivity) ของข้อมูลทางธุรกิจและการบริหารได้อย่างไร ซึ่งเป็นหัวใจสำคัญของการกำกับดูแลองค์กรอย่างมีประสิทธิภาพ
เมื่อองค์กรมีรากฐาน ERP ที่มั่นคง ข้อมูลทั้งหมดก็ไหลรวมกันเป็นหนึ่งเดียวเหมือน ‘ระบบไหลเวียนโลหิต’ ในร่างกาย แต่การที่ข้อมูลเหล่านี้จะถูกนำไปใช้ในการตัดสินใจได้อย่างปลอดภัยและโปร่งใส ต้องอาศัยการกำกับดูแลที่เข้มงวด นั่นคือบทบาทของ GRC ที่ต้องทำงานร่วมกับ Algorithm การที่หลายองค์กรประสบปัญหาในการใช้ข้อมูลจาก ERP เป็นเพราะความไม่เข้าใจว่า Algorithm ในระบบได้กำหนด ตรรกะ และ กฎเกณฑ์ แห่งความถูกต้องทาง Data ไว้แล้วอย่างละเอียดอ่อน ปัญหานี้มักนำไปสู่ความเข้าใจที่แตกต่างกันระหว่างสายงาน ทำให้เกิดการแก้ปัญหาที่มองข้ามความสัมพันธ์ของข้อมูลในมิติอื่น ๆ เราจะมาดูกันว่า Algorithm พื้นฐานทำงานอย่างไร และมันคือพลังสำคัญในการทำให้ Data ใน ERP สามารถใช้ในการบริหารแบบ Integrated Management และรองรับ GRC ได้อย่างสมบูรณ์ได้อย่างไร
2.1 ปัญหาความเข้าใจที่ต่างกัน: ERP กับ GRC (Governance, Risk, Compliance)
หลายครั้งที่ผู้บริหารหรือผู้ปฏิบัติงานมองว่า GRC เป็นเพียง ‘ภาระ’ หรือ ‘งานเอกสาร’ ที่ต้องทำเพิ่มเติม แต่ในบริบทของ ERP นั้น GRC คือส่วนที่ถูกฝังอยู่ในกระบวนการทำงานหลัก (Embedded GRC) Governance (ธรรมาภิบาล/การกำกับดูแล) คือการที่ระบบ ERP มี Algorithm ในการควบคุมและอนุมัติธุรกรรมต่าง ๆ อย่างชัดเจนและโปร่งใส เช่น การอนุมัติการสั่งซื้อที่ต้องผ่านลำดับชั้นที่กำหนดไว้ล่วงหน้า Risk (ความเสี่ยง) คือการใช้ Data ที่ถูกบูรณาการและถูกตรวจสอบโดยระบบเพื่อประเมินความเสี่ยง เช่น การใช้ข้อมูลการเงินและสต็อกเพื่อคำนวณความเสี่ยงสภาพคล่อง Compliance (การปฏิบัติตามกฎ) คือการที่ Algorithm ในระบบถูกตั้งค่าให้ปฏิบัติตามกฎหมายหรือข้อบังคับทางธุรกิจ (เช่น ภาษี, มาตรฐานบัญชี) โดยอัตโนมัติ ปัญหาที่พบบ่อย คือความเข้าใจที่แตกต่างกันในแต่ละสายงานเกี่ยวกับ ‘กฎ’ ที่ระบบกำหนดไว้ ทำให้เมื่อเกิดปัญหา ข้อมูลที่ถูกป้อนเข้ามานั้นไม่สอดคล้องกับตรรกะที่ควรจะเป็น ส่งผลให้ระบบ GRC ที่ฝังอยู่ใน ERP ไม่สามารถทำงานได้อย่างเต็มประสิทธิภาพ
2.2 Algorithm: Logic ที่กำหนดความถูกต้องและความเกี่ยวพันของ Data
Algorithm ไม่ใช่เรื่องซับซ้อน แต่คือ ชุดคำสั่งหรือตรรกะ ที่กำหนดว่าข้อมูลที่ถูกป้อนเข้าไปควรจะถูกประมวลผล จัดเก็บ และเชื่อมโยงกับข้อมูลอื่นอย่างไรในระบบ ERP นี่คือหัวใจสำคัญของการสร้างความถูกต้องของ Data และความเกี่ยวพันในทุกมิติ ตัวอย่างเช่น: เมื่อมีการบันทึกการผลิตสินค้า (Production Order) Algorithm จะตรวจสอบทันทีว่า:
- มีวัตถุดิบเพียงพอในสต็อกหรือไม่ (ความถูกต้อง ของปริมาณ)
- หักวัตถุดิบออกจากบัญชีสต็อกและบันทึกเป็นต้นทุนการผลิตทันที (ความเกี่ยวพัน ทางบัญชี)
- อัปเดตสถานะของใบสั่งผลิตและแจ้งไปยังฝ่ายขาย (ความเกี่ยวพัน ทางการปฏิบัติงาน)

ข้อมูลทางธุรกิจและการบริหารทุกประเภท จะต้องผ่านกระบวนการเหล่านี้เพื่อยืนยันความถูกต้องทาง Data และความเกี่ยวพันในทุกมิติ การทำความเข้าใจ Algorithm เหล่านี้ ทำให้ผู้บริหารตระหนักว่าปัญหาข้อมูลที่ผิดพลาดมักไม่ได้เกิดจาก ‘โปรแกรมเสีย’ แต่เกิดจากการป้อนข้อมูลที่ไม่เป็นไปตาม ‘ตรรกะ’ หรือ ‘กฎ’ ที่ระบบกำหนดไว้ตั้งแต่แรก ซึ่งส่งผลกระทบต่อทั้ง Governance และการประเมิน Risk ทันที
2.3 การบริหารแบบบูรณาการ (Integrated Management) ด้วย ERP Data
เมื่อ Algorithm ทำงานได้อย่างสมบูรณ์ในการทำให้ Data มีความถูกต้องและเกี่ยวพันกันในทุกมิติ ข้อมูลทั้งหมดจะรวมกันเป็น Single Source of Truth ที่ปราศจากข้อขัดแย้ง นี่คือพลังของการบริหารแบบบูรณาการ (Integrated Management) ที่ผู้บริหารไม่จำเป็นต้องรอการรวบรวมข้อมูลจากหลายฝ่ายหรือหลายบริษัทอีกต่อไป ทุกสายงานสามารถใช้ Dashboard ชุดเดียว ในการตัดสินใจข้ามฟังก์ชัน (Cross-Functional Decisions) ตัวอย่างเช่น: การใช้ข้อมูลการผลิต (จากโมดูล Production) และข้อมูลการเงิน (จากโมดูล Finance) มาวิเคราะห์ต้นทุนการผลิตแบบ Real-time เพื่อกำหนดราคาสินค้าเชิงกลยุทธ์ได้อย่างรวดเร็ว
การแก้ปัญหาที่ต้นเหตุ: การที่ทุก Transaction ถูกบันทึกและเชื่อมโยงด้วย Algorithm ใน ERP ทำให้สามารถทำ การตรวจสอบย้อนกลับ (Traceability) ได้ง่ายและรวดเร็ว เมื่อมีปัญหา ผู้บริหารสามารถสืบหาได้ทันทีว่าความผิดพลาดของข้อมูล (เช่น ข้อมูลสต็อกไม่ตรง) เกิดขึ้นที่กระบวนการใดในระบบ และแก้ไขที่จุดเริ่มต้นนั้น ไม่ใช่การมาปรับปรุงตัวเลขในรายงานปลายทาง ซึ่งช่วยสร้างความเชื่อมั่นในข้อมูลและส่งเสริม GRC ได้อย่างยั่งยืน
ในตอนนี้ เราได้เห็นแล้วว่า Algorithm คือ ตรรกะแห่งความถูกต้องและความเกี่ยวพัน ที่ถูกฝังอยู่ในระบบ ERP และเป็นกลไกสำคัญในการขับเคลื่อน GRC และการบริหารแบบบูรณาการ ข้อมูลที่ถูกกรองและเชื่อมโยงอย่างเป็นระบบนี้คือสิ่งที่สร้างคุณค่าเพิ่มและ Governance ที่เราต้องการอย่างแท้จริง อย่างไรก็ตาม Algorithm ที่เราพูดถึงในตอนนี้ ส่วนใหญ่ยังคงเป็น ‘ตรรกะที่มนุษย์กำหนด’ (Rule-Based Logic) ซึ่งมีข้อจำกัดในการรับมือกับความซับซ้อนและความผันผวนของโลกธุรกิจสมัยใหม่ คำถามคือ: เราจะทำอย่างไรให้ระบบ ERP ของเราสามารถคิด, คาดการณ์, และเรียนรู้ได้ด้วยตนเอง? นี่คือการก้าวข้ามจาก Algorithm แบบดั้งเดิม สู่การใช้ AI (Artificial Intelligence) และ Machine Learning (ML) ในการสร้างระบบอัตโนมัติอัจฉริยะ โปรดติดตาม ‘ตอนที่ 3: จุดสูงสุดแห่งวิวัฒนาการ: จาก Algorithm สู่ AI, Machine Learning และ IA’ เพื่อสำรวจว่าเราจะนำพลังแห่ง Data และ Logic ที่สร้างไว้ใน ERP มาปลดล็อกศักยภาพของ AI/IA ได้อย่างไร
โพสต์โดย Metha Suvanasarn 